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Bayesian Inference, Prediction, and Decision Theory

Benefits:

• provides a coherent framework for sequentially updating beliefs (models and

parameters) as new information is acquired through monitoring

• predicts consequences of future management actions while properly accounting

for uncertainty in updated beliefs

• evaluates the expected consequences of future management actions in a manner

that fully accounts for posterior uncertainty in beliefs and predictions

• (almost) places no limits on the complexity of models or utility functions, given

modern computing capabilities

source: Dorazio and Johnson (2003)



Bayesian Inference, Prediction, and Decision Theory (cont’d)

Difficulties:

• Computing an optimal sequence of proposed management actions is

computationally intensive

– discrete decision spaces ⇒ comparison of expected utilities of an enormous

number of possible sequences of management actions.

– For example, let

q = no. of possible actions taken at each decision time

τ = no. of decisions to be made for each unit of observation

n = no. of units of observation

Then, in general, (qτ )n = super-exponential no. of possible sequences of

management actions



Algorithms for Computing Optimal Sequences of Management Actions

• Backward-induction/dynamic-programming (exploits recursion) (Carlin et al.

1998, Hardwick and Stout 1999, 2002, Müller 1999, Müller et al. 2000)

• Stochastic search algorithms

– simulated annealing

– genetic algorithms

• Reinforcement learning

• Others?



A Simple, yet Computationally Challenging, Example

Suppose we observe n = 200 units of observation initially (at t = 0), and half of them

are in a favorable condition (y0 = 1) while the other half are in an unfavorable

condition (y0 = 0).

At each decision time, one of 2 actions (“do nothing” or “manage”) may be selected

for each unit.

A cautious ecologist, being unsure about the potential benefits of management,

randomly selects half of the units in favorable condition for management and leaves

the other half unmanaged. The same allocation of actions is applied to the units in

unfavorable condition.

Action y0 = 1 y0 = 0

“do nothing” 50 50

“manage” 50 50

Suppose this initial allocation management actions is maintained for T = 5 years,

and the condition of each unit is monitored in each of these years.



Data

Denote the management actions and conditions of units observed after T = 5 years as

follows:

(X0, X1, . . . , XT−1) = (n × T ) matrix X

(y0, y1, . . . , yT−1, yT ) = (n × (T + 1)) matrix Y

Utility

Denote the utility of a proposed sequence of τ management actions for m ≤ n units

of observation as follows:

U(X̃T , . . . , X̃T+τ−1, ỹT+1, . . . , ỹT+τ ) =

m
∑

i=1

T+τ
∑

t=T+1

U(x̃i,t−1, ỹi,t)

where U(x̃i,t−1, ỹi,t) denotes the following state- and action-dependent utilities:

x̃t−1 ỹt = 1 ỹt = 0

“do nothing” 1.0 0.0

“manage” 0.8 -0.2



Objective

Find the sequence of management actions, (X̃T , . . . , X̃T+τ−1), that maximizes the

expected utility

U(X̃T , . . . , X̃T+τ−1 | Y , X)

= E
(ỹ

T+1
,...,ỹ

T+τ
|

˜XT ,...,
˜XT+τ−1,Y ,X)

[

U(X̃T , . . . , X̃T+τ−1, ỹT+1, . . . , ỹT+τ )
]

For a sequence of τ = 5 decisions and m units of observation, there are (25)m

possibilities to consider!

m = 1 2 3 4 · · · 200

32 1,024 32,768 1,048,576 · · · ≈ 1 × 10301



Recall: we have T = 5 years of observations for each of n = 200 units that may be

used to predict the consequences of future management actions.
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Summary of Observations
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y0 = 1; do nothing
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AR(1) Logistic Regression Model (Bonney 1987)

f(yt | xt−1, yt−1, α, β) =
exp(ytηt−1)

1 + exp(ηt−1)

ηt−1 = x′
t−1α + (2yt−1 − 1)β

where x′
t−1 ∈ {(1, 0), (0, 1)} and x′

t−1α ∈ {α1, α2}



State- and Action-Dependent Transition Probabilities

Action yt = 1 yt = 0

“do nothing” yt−1 = 1 exp(α1+β)
1+exp(α1+β)

1
1+exp(α1+β)

m

x′
t−1 = (1, 0) yt−1 = 0 exp(α1−β)

1+exp(α1−β)
1

1+exp(α1−β)

“manage” yt−1 = 1 exp(α2+β)
1+exp(α2+β)

1
1+exp(α2+β)

m

x′
t−1 = (0, 1) yt−1 = 0 exp(α2−β)

1+exp(α2−β)
1

1+exp(α2−β)



Bayesian Estimation and Inference

Likelihood

f(Y | X, α, β) =

n
∏

i=1

T
∏

t=1

f(yi,t | xi,t−1, yi,t−1, α, β)

Prior, π(α, β)

logit−1(αj) ∼ Uniform(0, 1)

β ∼ Exponential(10)

Posterior

π(α, β | Y , X) ∝ f(Y | X, α, β) π(α, β)



Bayesian Prediction and Expected Utility

Posterior predictive distribution

p(ỹT+1, . . . , ỹT+τ | X̃T , . . . , X̃T+τ−1, Y , X)

=

∫

[

m
∏

i=1

T+τ
∏

t=T+1

f(ỹi,t | x̃i,t−1, ỹi,t−1, α, β)

]

π(α, β | Y , X) ∂α ∂β

Expected utility

U(X̃T , . . . , X̃T+τ−1 | Y , X)
.
=

1

R

R
∑

r=1

[

U(X̃T , . . . , X̃T+τ−1, ỹ
(r)
T+1, . . . , ỹ

(r)
T+τ )

]

.
=

1

R

R
∑

r=1

[

m
∑

i=1

T+τ
∑

t=T+1

U(x̃i,t−1, ỹ
(r)
i,t )

]



Simulated Annealing Algorithm

At kth iteration of algorithm, let

X̃
(k)

= (X̃
(k)

T , . . . , X̃
(k)

T+τ−1)

U(X̃
(k)

) = U(X̃
(k)

T , . . . , X̃
(k)

T+τ−1 | Y , X)

Step 1 Randomly select an initial sequence X̃
(0)

and evaluate U(X̃
(0)

)

Step 2 Assign an initial annealing “temperature” T (0) � U(X̃
(0)

)

Step 3 Randomly select a new sequence X̃
∗

in the vicinity of X̃
(k)

and evaluate U(X̃
∗
)

• Randomly select one of the τ decision times for each of the m units

• At these decision times, randomly select one of the possible management

actions

Step 4 If U(X̃
∗
) ≥ U(X̃

(k)
), accept X̃

∗
as new value of X̃

(k)
;

otherwise accept X̃
∗

with probability exp
(

(U(X̃
∗
) − U(X̃

(k)
))/T (k)

)



Simulated Annealing Algorithm (continued)

Step 5 Repeat steps 3–4, N = 500 times and keep track of the number of s

successful moves to a new point in the decision space.

Step 6 If s > 0, slowly decrease annealing “temperature” T (k+1) = ρT (k) (say,

ρ = 0.9) and go to step 3;

otherwise stop (i.e., maximum has been found at current temperature).



Posterior Distribution of Model Parameters
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Expected Utilities for a Single Unit of Observation

Given y5 = 0, optimal sequence of management actions is X̃ = (1, 1, 1, 1, 1)
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Expected Utilities for 2 Units of Observation

Given y5 = (0, 1)′, optimal sequences of management actions are

X̃ =





1 1 1 1 1

1 1 1 1 1




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Summary of a Second Set of Observations
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y0 = 1; do nothing

0 1 2 3 4 5

0

10

20

30

40

50

No. times in favorable condition

N
o.

 u
ni

ts
 o

f o
bs

er
va

tio
n

y0 = 0; manage

0 1 2 3 4 5

0

10

20

30

40

50

No. times in favorable condition

y0 = 1; manage



Posterior Distribution of Model Parameters
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Expected Utilities for a Single Unit of Observation

Given y5 = 0, optimal sequence of man-

agement actions is X̃ = (1, 1, 0, 0, 0)
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Given y5 = 1, optimal sequence of man-

agement actions is X̃ = (0, 0, 0, 0, 0)
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Effect of Sample Size on Convergence/Annealing Time
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Tentative Conclusions and Suggestions for Additional Research

• Still more work to be done, but simulated annealing appears to be

computationally feasible for optimization problems of “moderate” size

• How large is “moderate”?

• Performance comparisons are needed: DP vs SA vs GA vs RL

• Can additional gains in computational efficiency be achieved by combining

stochastic search algorithms and backward induction (in problems/models where

this is possible)?

• We have some powerful tools. Need to demonstrate their utility in real problems:

– dependence among units of observation (e.g., spatially correlated

observations)

– alternative forms of temporal dependence within units of observation (e.g.,

long “memory ” in communities of plant species)

– errors in sampling, measurement, or in application of management actions

– complex utility functions that include predictions of observable system state

and model parameters (e.g., active adaptive management problems)


